Pairs of cubic forms in many variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubic Forms in 14 Variables

The result can be rephrased in geometric language to say that any projective cubic hypersurface defined over Q, of dimension at least 12, has a Q-point. Davenport’s result was extended to arbitrary number fields by Pleasants [9], and it would be interesting to know whether Theorem 1 could similarly be extended. These results can be seen as an attempt to extend the classical theorem of Meyer (18...

متن کامل

Forms in Many Variables and Differing Degrees

We generalise Birch’s seminal work on forms in many variables to handle a system of forms in which the degrees need not all be the same. This allows us to prove the Hasse principle, weak approximation, and the Manin–Peyre conjecture for a smooth and geometrically integral variety X ⊆ P, provided only that its dimension is large enough in terms of its degree.

متن کامل

Classification of Boolean Cubic Forms in Nine Variables

We describe a new invariant that we have used to obtain the complete classification of the cubic forms of nine variables. In particular, we compute the covering radius of RM(2, 9) into RM(3, 9).

متن کامل

The Hasse Principle for Pairs of Diagonal Cubic Forms

By means of the Hardy-Littlewood method, we apply a new mean value theorem for exponential sums to confirm the truth, over the rational numbers, of the Hasse principle for pairs of diagonal cubic forms in thirteen or more variables.

متن کامل

Improvements in Birch’s Theorem on Forms in Many Variables

We show that a non-singular integral form of degree d is soluble over the integers if and only if it is soluble over R and over Qp for all primes p, provided that the form has at least (d− 12 √ d)2 variables. This improves on a longstanding result of Birch.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2003

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa110-2-3